重庆理工大学学报(自然科学) ›› 2024, Vol. 38 ›› Issue (2): 55-64.

• 车辆工程 • 上一篇    下一篇

多参数优化 MPC的自动驾驶轨迹跟踪控制

李学慧,苏 振,张俊友   

  1. 山东科技大学交通学院
  • 出版日期:2024-03-22 发布日期:2024-03-22
  • 作者简介:李学慧,女,硕士,讲师,硕士生导师,主要从事智能汽车、新能源汽车控制研究,E-mail:huizi6062@126.com;通信作者苏振,男,硕士研究生,主要从事车辆动力学与控制研究,E-mail:sukongwork@qq.com;张俊友,男,博士,教授,硕士导师,主要从事无人驾驶与车路协同、智能交通系统研究,E-mail:junyouzhang@163.com。

Research on autonomous driving trajectory tracking control by multi-parameter optimization MPC

  • Online:2024-03-22 Published:2024-03-22

摘要: 针对自动驾驶车辆横向控制在大曲率路径处跟踪误差较大的问题,提出一种多参数优化模型预测控制(model predictive control,MPC)的轨迹跟踪控制策略。根据车辆动力学模型和目标函数搭建轨迹跟踪MPC控制器,将车速、横向位置误差和横摆角误差作为模糊输入,输出前轮转角作用于车辆。通过模糊控制对MPC控制器的预测时域、控制时域和权重矩阵等多个参数进行实时优化,在双移线轨迹不同速度和不同路面附着系数下完成Carsim/Simulink联合仿真,验证控制策略的有效性。仿真结果表明,MPC多参数优化算法优于MPC传统算法和MPC单参数优化算法,在高附着路面轨迹跟踪精度平均可提高27.4%;在低附着路面能够降低最大横摆角误差27.3%,并且能够更好地平衡跟踪精度和操纵稳定性。

关键词: 自动驾驶, 轨迹跟踪控制, 模型预测控制, 多参数优化, 模糊控制

Abstract: A multi-parameter optimized model predictive control(MPC)trajectory tracking control strategy is proposed to address the problem of large tracking position error at large curvature paths for autonomous vehicle lateral control.The trajectory tracking MPC controller is built according to the vehicle dynamics model and objective function,and the vehicle speed,lateral position error and yaw angle error are taken as fuzzy inputs,and the output front wheel angle acts on the vehicle.The prediction time domain,control time domain and weight matrix of the MPC controller are optimized in real time through fuzzy control,and the Carsim/Simulink joint simulation is completed under different speeds of the double-shifted line trajectory and different road adhesion coefficients to validate the effectiveness of the control strategy.Our simulation results show the MPC multi-parameter optimization algorithm is superior to the MPC traditional algorithm and the MPC single-parameter optimization algorithm.Meanwhile,the average trajectory tracking accuracy is improved by 27.4% in the high adhesion road;the maximum yaw angle error is reduced by 27.3% in the low-adhesion road,demonstrating it better balances the tracking accuracy and the stability of the maneuver.

中图分类号: 

  • U461.1