

重慶理工大學 学报(自然科学)

Journal of Chongqing University of Technology(Natural Science)

doi: 10.3969/j.issn.1674-8425(z).2021.05.009

分布式驱动电动汽车横摆稳定性控制策略研究

李胜琴,闫祥伟,金丽彤

(东北林业大学 交通学院,哈尔滨 150040)

摘 要:针对某型纯电动汽车进行轮毂电机参数匹配设计,建立整车参数化模型;以横摆角 速度和质心侧偏角偏差作为控制目标,基于滑模控制理论及罚函数法,提出整车横摆稳定性控 制和轮毂电机转矩分配控制策略;选取双移线和鱼钩试验2种典型工况,与无控制和模糊 PID 控制策略进行对比分析,对控制策略进行仿真验证。结果表明:采用积分滑模控制策略后,双移 线试验工况下,车辆横摆角速度最大值为0.17 rad/s,质心侧偏角最大值为-0.038 rad;鱼钩试 验工况下,车辆横摆角速度最大值为0.23 rad/s,质心侧偏角最大值为0.049 rad,均小于未加控 制时车辆的状态参数,所提出的整车横摆稳定性控制策略能够有效对车辆进行横摆稳定性控 制,降低车辆失稳机率。

关 键 词:电动汽车;分布式驱动;横摆稳定性;积分滑模控制;转矩分配
 中图分类号:U469.72
 文章编号:1674-8425(2021)05-0065-09

Study of Yaw Stability Control Strategy on Distributed Drive Electric Vehicle

LI Shengqin, YAN Xiangwei, JIN Litong

(School of Traffic and Transportation, Northeast Forest University, Harbin 150040, China)

Abstract: In the paper, the wheel motor parameter matching design is carried out, and the vehicle parametric model is established for a pure electric vehicle. Based on the sliding mode control theory and penalty function method, the yaw stability control and wheel motor torque distribution control strategy are proposed with yaw rate and side slip angle deviation as control objectives. Two typical working conditions of double lane change and fishhook test are selected to verify the control strategy compared with no control and fuzzy PID control strategy. The results show that the maximum yaw rate

Citation format: LI Shengqin, YAN Xiangwei, JIN Litong. Study of Yaw Stability Control Strategy on Distributed Drive Electric Vehicle [J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5):65-73.

收稿日期:2020-08-09

基金项目:中央高校基本科研业务费专项项目(2572019BG01)

作者简介:李胜琴,女,博士研究生,副教授,主要从事车辆系统动力学控制研究,E-mail:lishengqin@126.com。

本文引用格式:李胜琴,闫祥伟,金丽彤.分布式驱动电动汽车横摆稳定性控制策略研究[J].重庆理工大学学报(自然科学),2021,35 (5):65-73.

is 0.17 rad/s and the maximum sideslip angle is -0.038 rad/s under double lane change test; the maximum yaw rate and sideslip angle are 0.23 rad/s and 0.049 rad respectively, and they are all less than the state parameters of vehicles without control. The vehicle yaw stability control strategy proposed in this paper can effectively control vehicle yaw stability and reduce vehicle instability probability.

Key words: electric vehicle; distributed drive; yaw stability; integral sliding mode control; torque distribution

随着全球工业化蓬勃发展,环境污染问题和 能源问题日趋严重。对汽车行业而言,针对能源 和排放问题的技术改革最优方案就是纯电动汽 车,同时伴随着人们日益增长的生活水平的需求, 对于舒适性、操纵性和安全性要求更高^[1]。分布 式驱动电动汽车在轮胎纵向驱动力、侧向力等约 束条件下,如何得到合理的直接横摆力矩,并将其 分配给4个轮毂电机,对提高车辆横摆稳定性而 言是急需解决的问题。

对于横摆稳定性控制策略的研究,大多集中 在直接横摆力矩控制器的优化和轮毂电机转矩分 配策略的优化。Semaan A 等^[2] 根据神经网络原 理,设计了一种人工神经网络,估计分布式轮毂电 机提供车辆保持横摆稳定所需的直接横摆力矩。 Gao 等^[3]针对分布式驱动电动汽车的横摆稳定性 控制,基于线性时变径向基函数神经网络的转矩 分配策略,结合轨迹跟踪算法,优化转矩分配。 Chen 等^[4]提出一种基于模型预测控制的分布式 驱动电动汽车轮毂电机转矩分配策略,分别基于 能量效率的策略和基于最小功率损耗的策略来实 施轮毂电机转矩分配。黄彩霞等^[5]基于区域极点 配置方法制定车辆横摆稳定性控制策略,分析并 设计性能权重矩阵参数,提出以路面附着系数为 依据的轮毂电机转矩分配策略。赵阳^[6]提出在控 制车辆的纵向和侧向稳定性同时,将集成能量管 理作为控制目标,通过 PSO 算法优化通信序列,针 对车辆不同制动工况,制定相应的制动力回收策 略。张新锋等^[7]针对分布式驱动电动汽车的横摆 稳定性采用分层控制结构设计横向稳定性控 制器。

基于积分滑模控制和线性滑模控制原理,设

计直接横摆力矩控制策略,制定相应的轮毂电机 转矩分配策略,通过对轮毂电机输出转矩的控制 实现车辆横摆稳定性控制,实现分布式电动汽车 横摆稳定性控制,具有一定的理论及实际应用 价值。

1 整车参数化模型

1.1 基本车辆模型

利用 Carsim 软件车辆模型库中 C-Class 三厢 车作为初始车型,按照国内某电动车车型参数,设 置包括车体参数、传动系统、制动系统和轮胎参数 的基本模型,并根据分布式驱动电动汽车非簧载 质量和转动惯量较大的特点,适当增加二者的数 值,用以模拟实际工况。

整车基本模型相关参数见表1,根据表中数据 对车辆系统进行设置。

表1 整车相关参数

参数	数值
整车质量 m/kg	1 554
轴距 ℓ/m	2.65
簧载质量 m _b /kg	1 170
整车横摆转动惯量 <i>I₂/</i> (kg・m ²)	1 536.7
重心高度 h_g/m	0.54
车轮转动惯量 $J_w/(\text{kg}\cdot\text{m}^2)$	0.9
轮距 d/m	1.522
车轮滚动半径 r/m	0.326
质心到前轴距离 a/m	1.015
前轮侧偏刚度 $k_{fl}, k_{fr}/(N \cdot rad^{-1})$	35 000
质心到后轴距离 b/m	1.635
后轮侧偏刚度 $k_d, k_r/(N \cdot rad^{-1})$	40 000

1.2 电机模型

分布式驱动电动汽车由电机控制动力输出, 车辆的操纵稳定性由电机的动力性能直接决定。 轮毂电机集成传动系、制动系功能,对于加速、减 速和倒车等驾驶意图,均由电机改变输出扭矩 完成。

1.2.1 电机参数匹配

电机参数需根据整车动力性能需求进行匹 配,其中包括电机额定功率、峰值功率、额定转矩、 峰值转矩、额定转速和峰值转速。

根据参考车型的相关参数和国标 GB/T 28232—2012 的相关试验内容,提出整车动力性需 求指标,如表2 所示^[8]。

表2 整车动力性需求指标

参数	指标
最高车速/(km・h ⁻¹)	140
20 km/h 最大爬坡度/%	25
50~80 km/h 加速时间/s	5

车辆行驶时,4个电机总的需求功率 P_{all} 按式 (1) 计算:

$$P_{\text{all}} = \frac{1}{3\ 600} (mgf\cos\alpha + \frac{1}{2}\rho C_D A \left(\frac{u}{3.6}\right)^2 + mg\sin\alpha + \delta ma) \frac{u}{\eta_T}$$
(1)

式中:g 为重力加速度(m/s²),取9.8; F 为滚动阻 力系数,一般乘用车滚动阻力系数在 0.01 ~ 0.02 之间^[9],取值 0.02; ρ 为空气密度(N·s²·m⁻⁴), 取 1.225 8; C_p 为空气阻力系数,一般乘用车的空 气阻力系数取 0.28 ~ 0.4^[10],取值 0.3; A 为迎风 面积(m²),参考电动汽车取值 2.2; u 为车辆行驶 速度(km/h); η_T 为机械传动效率,由于轮毂电机 直接作用于 4 个车轮,故可取值为 1; α 为爬坡度 对应的坡度角; δ 为车辆旋转质量换算系数,电动 汽车取 1.04^[11]; a 为车辆加速度(m/s)。

电机额定功率由车辆在平直路面上以最高车 速行驶时的需求功率决定。电机峰值功率以最高 车速所需功率、最大爬坡能力所需功率和最大加 速能力所需功率共同决定。根据上述原则,结合 表1、2和式(1),按照4个电机平均分配的原则, 计算得到单个电机额定功率 P_N 为9kW,单个电 机的峰值功率 P_{mx} 为21kW。

车速和电机转速之间关系如式(2)所示:

$$u = 0.377 \frac{r \cdot n}{i_x \cdot i_0} \tag{2}$$

式中: $i_g \ i_0$ 为变速器和主减速器传动比,由于电机 直接控制车轮,因此均可设为1;u为车辆行驶速 度(km/h);n为电机转速(r/min);r为车轮滚动 半径(m)。则轮胎不打滑情况下,由式(2)可知电 机最高转速 n_{max} 为1200 r/min。

电机的基速一般指弱磁点的转速,基速以下 电机在恒转矩区工作,基速以上电机在恒功率区 工作,因此电机的基速也被称为额定转速。电机 的基速比是指电机峰值转速与额定转速之比,一 般取值2~4^[12],论文选取基速比为2.5。则根据 电机峰值转速1200 r/min,计算得到电机额定转 速 n_N为480 r/min。

电机峰值转矩由车辆在低速、爬坡情况下输出的转矩确认。汽车在坡度角为14°、车速为20km/h工况时电机峰值转矩*T*max为:

$$T_{\max} = \frac{1}{4} (mgf\cos\alpha_{\max} + mg\sin\alpha_{\max} + \frac{1}{2}\rho C_D A \left(\frac{u_s}{3.6}\right)^2) \cdot r \qquad (3)$$

式中: a_{max} 为最大爬坡度对应的坡度角,25% 爬坡 度对应坡度角为14°; u_s 为爬坡速度(km/h),取20 km/h。

根据式(3)计算,并考虑动力性余量需求,电 机峰值转矩 T_{max}为400 N。

电机额定转矩 T_N 按式(4)计算:

$$T_N = \frac{9\ 549 \cdot P_N}{n_N} \tag{4}$$

将电机额定转速、额定功率代入到式(4),算 得电机额定转矩 *T_N* 为 180 N・m。

1.2.2 电机数学模型

由于本文中只研究车辆横摆稳定性的控制,

电机仅作为提供车辆平稳运行所需的动力源,电 机本身工作特性并不是研究重点,故对电机内部 工作特性不做过多涉及,因此对电机模型进行相 应简化。

引入电机时间常数 t_c,若不考虑电感和阻尼对 电机产生的影响,则对于电机的需求转矩与实际 转矩之间的关系可以简化为1阶传递函数如式 (5)所示^[13]:

$$T = \frac{1}{t_c s + 1} T_m \tag{5}$$

式中:*T*为实际输出转矩(N·m);*T_m*为需求转矩(N·m)。

2 橫摆稳定性控制策略

选定横摆角速度与质心侧偏角作为表征车辆 横摆稳定性的观测参数,制定控制策略,保证横摆 角速度与质心侧偏角能够迅速恢复到相应期望 值。通过整车模型和2自由度参考模型对比得到 实时观测参数增益,提供给直接横摆力矩控制器, 得到相应的直接横摆力矩期望。选择滑模控制方 法,设计积分滑模直接横摆力矩控制器和线性滑 模直接横摆力矩控制器,依据车辆横摆稳定性要 求,设计轮毂电机转矩分配控制器,将控制器得到 的直接横摆力矩期望值分配给4个轮毂电机,实 现轮毂电机控制。

2.1 2自由度参考模型

选择横摆角速度和质心侧偏角作为车辆稳定 性识别参数,为了便于得到车辆稳定状态时的横 摆角速度与质心侧偏角理想值,一般将整车模型 简化为2自由度模型如图1所示。假定车辆纵向 速度为定值,只考虑车辆沿 y 轴的侧向运动与绕 z 轴的旋转运动,此时需满足如下条件:

1) 车辆质心为车辆坐标原点;

2)忽略悬架系统影响,不考虑转向系统的影响,车辆左右两侧前轮转角相同;

3) 忽略侧向风的影响;

4) 4 个轮胎型号相同且动力学特性相同。

图1 2自由度模型示意图

由轮胎侧向力和侧偏角的关系,且 $\beta = \frac{v_y}{v_x}$,可得2自由度车辆运动微分方程为:

$$\begin{cases} mv_{x}(\dot{\beta} + \gamma) = -(k_{f} + k_{r})\beta + \\ (bk_{r} - ak_{f})\frac{\gamma}{v_{x}} + k_{f}\delta_{f} \\ I_{z}\dot{\gamma} = (bk_{r} - ak_{f})\beta - \\ (a^{2}k_{f} + b^{2}k_{r})\frac{\gamma}{v_{x}} + ak_{f}\delta_{f} \end{cases}$$
(6)

式中: v_x 为车辆纵向速度(m/s); v_y 为车辆侧向速 度(m/s); γ 为车辆横摆角速度(rad/s); β 为质心 侧偏角(rad); k_f, k_r 为车辆前、后轮胎侧偏刚度 (N/rad); δ_f 为前轮转角(rad); I_z 为车辆绕z轴的 转动惯量(kg·m²)。

由于轮胎侧向力受到轮胎与路面的附着力极 限制约,因此横摆角速度和质心侧偏角的最大 值为:

$$\gamma_{\max} = \frac{\mu g}{v_x} \tag{7}$$

$$\beta_{\max} = \mu g \left(\frac{b}{v_x^2} + \frac{ma}{lk_r} \right) \tag{8}$$

式中: µ 为路面附着系数。

当系统稳定时,结合式(6)~(8)得横摆角速 度和质心侧偏角的期望值为:

$$\gamma^* = \min\left\{ \left| \frac{v_x \delta_f}{l(1 + K v_x^2)} \right|, \left| \frac{\mu g}{v_x} \right| \right\}$$
(9)

$$\beta^* = \min\left\{ \left| \left(\frac{a}{v_x^2} + \frac{ma}{lk_r} \right) \frac{v_x^2}{l(1 + Kv_x^2)} \cdot \delta_f \right|, \\ \left| \mu g \left(\frac{b}{v_x^2} + \frac{ma}{lk_r} \right) \right| \right\}$$
(10)

式中: K 为稳定性系数, $K = \frac{m}{l^2} (\frac{a}{k_r} - \frac{b}{k_f})_{\circ}$

2.2 积分滑模直接横摆力矩控制器

设横摆角速度与质心侧偏角增益为 $e = [e_1, e_2]$,其中 $e_1 = \Delta\beta, e_2 = \Delta\gamma$ 。根据式(6),增加 1 个

额外的补偿力矩 ΔM ,得到提供补偿力矩后的车辆 瞬时状态方程:

$$\begin{cases} mv_{x}(\beta + \gamma) = -2(k_{f} + k_{r})\beta + \\ 2(bk_{r} - ak_{f})\frac{\gamma}{v_{x}} + 2k_{f}\delta_{f} \\ I_{z}\dot{\gamma} = 2(bk_{r} - ak_{f})\beta - 2(a^{2}k_{f} + b^{2}k_{r})\frac{\gamma}{v_{x}} + \\ 2ak_{f}\delta_{f} + \Delta M \end{cases}$$
(11)

式中:Δ*M* 为直接横摆力矩期望(N・m)。 转化为状态空间方程如下:

$$\dot{x} = \mathbf{A}x + \mathbf{B}u + \mathbf{B}_m \delta_f \tag{12}$$

$$\vec{x} \div \mathbf{x} = \begin{bmatrix} \beta \\ \gamma \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} \frac{-2(k_f + k_r)}{mv_x} & \frac{(bk_r - ak_f)}{mv_x^2} - 1 \\ \frac{2(bk_r - ak_f)}{I_z} & -\frac{2(a^2k_f + b^2k_r)}{v_x I_z} \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} \mathbf{0} \\ B_2 \end{bmatrix} = \begin{bmatrix} 1 \\ I_z \end{bmatrix}$$
$$\boldsymbol{B}_m = \begin{bmatrix} B_{m1} \\ B_{m2} \end{bmatrix} = \begin{bmatrix} \frac{k_f}{mv_x} \\ \frac{ak_f}{I_z} \end{bmatrix}, \ u = \Delta M$$

将相关参数代入式(8)可得:

$$\begin{bmatrix} \dot{\beta} \\ \dot{\gamma} \end{bmatrix} - \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ B_2 \end{bmatrix} u + \begin{bmatrix} B_{m1} \\ B_{m2} \end{bmatrix} \delta_f$$
(13)

设滑模面为:

$$s = e_2 - e_2(0) - \int_0^t v(\tau) \,\mathrm{d}\tau \qquad (14)$$

$$\dot{s} = \dot{e}_2 - v(t) = 0$$
 (15)

则状态空间方程表示为:

$$\dot{e} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & 0 \end{bmatrix} e + \begin{bmatrix} 0 \\ 1 \end{bmatrix} v + \begin{bmatrix} B_{m1} \\ 0 \end{bmatrix} \delta_f \quad (16)$$

由式(12)可知,目标由控制 β 与 γ 趋近于 β* 与 γ*转化为控制二者增益 e 趋近于零。则对于 v 函数来说,可以设为:

$$v = - \begin{bmatrix} k_1 & k_2 \end{bmatrix} \cdot \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} - \begin{bmatrix} B_{m1} \\ 0 \end{bmatrix} \delta_f \qquad (17)$$

选择李雅普诺夫方程为:

$$V = \frac{1}{2}s^2 \tag{18}$$

最终得到直接横摆力矩控制器为:

$$\Delta M = -\frac{1}{B_2} (A_{21}\beta + A_{22}\gamma + B_{m2}\delta_f - v)] (19)$$

2.3 线性滑模直接横摆力矩控制器 设滑模面为:

$$s = ce = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \cdot \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$
(20)

式中: c1、c2 为常数。

根据李雅普诺夫方程为:

$$V = \frac{1}{2}s^2 \tag{21}$$

将式(20)(21)代入式(11)可得:

$$\dot{V} = s(H + \frac{c_1}{I_z}u) \tag{22}$$

式中:

$$H = \left[\frac{c_1}{I_z}(bk_r - ak_f) - c_2\right]\beta - \left[\frac{c_1}{I_z v_x}(a^2k_f + b^2k_r)\right]\gamma - c_1\gamma^* - c_2\beta^* + \frac{c_1ak_f}{I_z}\delta_f$$

由式(22)可得:

$$s \cdot \dot{s} \leq |s| \cdot |H| + \frac{c_1}{I_z} s \cdot u$$
 (23)

由李雅普诺夫直接方法的系统稳定可控需满 足的条件,结合式(22),可得:

$$u > -\frac{I_z}{c_1} |H| \tag{24}$$

根据式(24),设 $u = -\frac{I_z}{c_1}|H| + Q(Q 为常)$

数),并对控制变量 u 进行抖振现象处理,则可得 直接横摆力矩控制器为:

$$\Delta M = u = \left(-\frac{I_z}{c_1}|H| + Q\right)\operatorname{sat}(\varepsilon) \quad (25)$$

式中:sat(
$$\varepsilon$$
) =
$$\begin{cases} 1 & s > \varepsilon \\ s/\varepsilon & |s| \leq \varepsilon_{\circ} \\ -1 & s < -\varepsilon \end{cases}$$

2.4 轮毂电机转矩分配控制器

考虑电机特性、路面附着系数等约束条件,寻 找相应优化目标,形成多目标约束寻找最优解的 分配方式,并选择罚函数法进行分配计算。

2.4.1 优化目标

为表征车辆稳定性要求,考虑到车辆行驶工况的非线性特性,可将轮胎附着率的平方和作为优化目标函数:

$$\min J = \sum_{i=1}^{4} \frac{F_{xi}^2 + F_{yi}^2}{\mu^2 F_{zi}^2}$$
(26)

式中: F_{xi} 为路面提供纵向力(N),其中i = 1 < 2 < 3 < 4(左前、右前、左后和右后); F_{yi} 为路面提供侧向力 (N); F_{zi} 为路面提供垂向力(N)。

2.4.2 约束条件

1) 直接横摆力矩约束

轮毂电机转矩分配实际上是将控制器得出的 直接横摆力矩期望值进行再次分配的过程,因此 依据各轮所受轮胎纵向力对质心形成的横摆力 矩,建立约束函数:

$$g(F_{xi}) = F_{x1} \left(-\frac{d}{2} \cos \delta_f + a \sin \delta_f \right) + F_{x2} \left(\frac{d}{2} \cos \delta_f + a \sin \delta_f \right) - F_{x3} \cdot \frac{d}{2} + F_{x4} \cdot \frac{d}{2} - \Delta M \qquad (27)$$

2) 轮毂电机峰值转矩约束

驱动轮毂电机本身受到蓄电池、电压、温度和 反应时间等的影响,每个电机提供的最大输出转 矩均需要设置相应的限制,建立约束函数:

$$h_1(F_{xi}) = T_{\max} - |F_{xi}| \cdot r$$
 (28)

3) 路面附着系数约束

在轮毂电机转矩分配策略中需要设计可按照 不同路面状况制定分配策略的约束条件,建立约 束函数:

$$h_{2}(F_{xi}) = \sqrt{(\mu F_{zi})^{2} - F_{yi}^{2}} - |F_{xi}| \quad (29)$$

构建罚函数如下:

$$L = J - \psi(\ln h_1 + \ln h_2) + \frac{1}{\sqrt{\psi}}g^2 \qquad (30)$$

对式(30)中 F_{x1} 、 F_{x2} 、 F_{x3} 、 F_{x4} 进行微分偏导得 出 ∇L ,并令 $\nabla L = 0$ 。用数值迭代法求最优解 F_{xi}^{*} , 设 ψ 初始值为1,并在迭代过程中使 ψ 不断减小 且趋近于零,求出 min $L(F_{xi},\psi)$ 的最优解。

得到各轮毂电机最优纵向力后按照式(31)进 行计算得到,然后将需求转矩提供式(5)的电机模 型,由电机模型输出实际转矩提供给各驱动轮。

$$T_{mi} = F_{xi} \cdot r \tag{31}$$

式中: T_{mi} 为电机需求转矩(N・m),i = 1、2、3、4 (左前、右前、左后和右后)。

3 控制策略仿真验证

综合车身模型、电机模型、直接横摆力矩控制 器模型和轮毂电机转矩分配控制器模型,建立联 合仿真模型,分别选取双移线工况和鱼钩工况进 行仿真试验。

为了对所提出的滑模控制策略进行验证,分 别进行了无控制、传统模糊 PID 控制、积分滑模控 制和线性滑模控制几种策略下车辆的仿真试验, 对车辆的横摆角速度和质心侧偏角进行对比 分析。

3.1 双移线工况

根据双移线试验标准 ISO 3888-1-1999,方向 盘转角输入设置如图 2 所示,选取路面附着系数 为 0.85 的干燥沥青路面,测试车速为 120 km/h, 仿真时间为 12 s^[14],仿真结果如图 2~4 所示。

图2 方向盘转角输入

图 3、4 是在双移线工况中,车辆横摆角速度 和质心侧偏角的变化曲线。

图 3 横摆角速度曲线

图4 质心侧偏角曲线

在未施加控制时,横摆角速度和质心侧偏角 均偏离期望值变化轨迹,在3.5 s时横摆角速度达 到最大值0.24 rad/s,0.5 s 后质心侧偏角达到最 大值-0.047 rad。施加积分滑模整车控制策略和 线性滑模整车控制策略后,横摆角速度和质心侧 偏角迅速减小至期望值,并沿着期望值轨迹变化, 横摆角速度最大值分别为 0.17、0.20 rad/s;质心 侧偏角最大值分别为 -0.038、-0.040 rad。2 种 控制策略均能有效对车辆稳定性进行控制。

图 5、6 是双移线工况中,车辆的行驶轨迹曲 线和各轮毂电机输出转矩的变化曲线。可以看 出:施加积分滑模、线性滑模和模糊 PID 控制策略 后,车辆的行驶轨迹横向位移最大值分别为 3.66、 3.78、3.80 m,均小于未施加控制时的最大值,回 正速度变快,且滑模控制的 2 种控制策略均优于 模糊 PID 控制策略。轮毂电机转矩分配策略可以 保证施加有效的直接横摆力矩,对车辆横摆稳定 进行控制,使得整车横摆稳定性控制策略能发挥 较好的作用。

图5 行驶轨迹曲线

图6 轮毂电机转矩变化曲线

3.2 鱼钩工况

美国 NHTSA 新车评定规程中 NO. NHTSA-2001-9663 文件规定,方向盘转角输入如图 7 所 示^[15],仿真试验结果如图 8~11 所示。

图7 鱼钩试验方向盘转角输入曲线

图 8、9 是在鱼钩试验工况中,车辆横摆角速 度和质心侧偏角曲线。施加积分滑模控制和线性 滑模控制策略后,横摆角速度和质心侧偏角迅速 减小至期望值,并沿着期望值轨迹变化,横摆角速 度最大值分别为 0.23、0.24 rad/s,小于未控制的 0.28 rad/s; 质心侧偏角最大值分别为 0.041、 0.042 rad,小于未控制的 0.083 rad。3 种控制策 略均能有效对车辆稳定性进行控制,而对滑模控 制策略和模糊 PID 控制策略的效果进行比较,滑 模控制的 2 种控制策略控制速度更快,控制效果 也更好。

图 10、11 是鱼钩工况中,车辆的行驶轨迹曲 线和各轮毂电机输出转矩的变化曲线。

图8 横摆角速度曲线

图9 质心侧偏角曲线

图10 行驶轨迹曲线

图 11 轮毂电机转矩变化曲线

当车辆未进行控制时,车辆的行驶轨迹与期 望轨迹差距较大,横向位移最大值为28.2 m。行 驶方向发生较大变化。施加积分滑模、线性滑模 和模糊 PID 控制策略后,车辆的行驶轨迹横向位 移最大值分别为18.6、20.3、22.1 m,均小于未施 加控制时的最大值,行驶轨迹修正效果明显,且滑 模控制的2 种控制策略均优于模糊 PID 控制策 略。轮毂电机转矩分配策略可以保证施加有效的 直接横摆力矩对车辆横摆稳定进行控制。

4 结论

 1)针对分布式驱动电动汽车,进行轮毂电机 参数匹配,建立参数化模型。

 农据滑模控制原理,提出积分滑模和线性 滑模车辆横摆稳定性控制策略,进行整车横摆稳 定力矩控制;依据罚函数法提出轮毂电机转矩分 配控制策略,实现车辆横摆稳定性控制。

3)选取双移线和鱼钩试验工况,分别进行不同控制策略下车辆横摆稳定性仿真试验,以对所提出的控制策略进行验证。结果表明:施加控制后,车辆横摆角速度及质心侧偏角均小于未加控制时车辆输出参数,表明所提出的整车横摆稳定性控制策略能够矫正车身姿态,修正车辆行驶轨迹,有效控制车辆的横摆稳定性。

参考文献:

- POURIA A. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles [J]. Journal of Cleaner Production, 2019, 225:1209 1219.
- [2] SEMAAN A, OSSAMA M. A study of stability and power consumption of electric vehicles using different modern control strategies [J]. Alexandria Engineering Journal,

2018,58(4):1281-1290.

- [3] GAO Xiang, LIN Cheng, LIANG Sheng, et al. LTV-RBF approach for yaw stability control of distributed drive electric vehicles [P]. DEStech Transactions on Environment, Energy and Earth Sciences, 2017.
- [4] CHEN Jian, LIN Cheng, LIANG Sheng, et al. A MPC-Based Torque Distribution Strategy for Distributed Drive Electric Vehicles [P]. DEStech Transactions on Environment, Energy and Earth Sciences, 2018.
- [5] 黃彩霞, 雷飞, 胡林, 等. 轮毂电机驱动汽车区域极点 配置横向稳定性控制[J]. 汽车工程, 2019, 41(8):905
 -914.
- [6] 李胜琴,于博.基于 CRUISE 的纯电动汽车动力参数 匹配设计及仿真[J].森林工程,2019,35(1):80-86.
- [7] 张新锋,朱明,王奥特.分布式驱动电动汽车横摆稳定 性控制研究[J].重庆理工大学学报(自然科学), 2020,34(2):24-31.
- [8] GB/T 28382—2012, 纯电动乘用车技术条件[S].
- [9] 石则强. 轻型汽车道路行驶阻力的测量与模拟[J]. 交通节能与环保,2015,11(2):20-24.
- [10] 平培力,杜伟涛,胡玉梅.基于能量守恒法测试汽车的 空气阻力系数[J].中南大学学报(自然科学版), 2019,50(7):1744-1749.
- [11] 赵广宣. 纯电动汽车动力传动系统匹配与整体优化研究[D]. 镇江:江苏大学,2017.
- [12] 郭金刚,董吴轩.四轮毂电机驱动电动汽车动力系统 优化匹配[J].公路交通科技,2019,36(7):150-158.
- [13] 魏琼. 分布式驱动电动汽车直接横摆力矩控制策略研 究[D]. 西安:长安大学,2018.
- [14] ISO 3888-1-1999, Passenger cars-Test track for a severe lane-change manoeuvre-Part 1: Double lane – change [S].
- [15] 曹飞.汽车横向稳定性及其试验评价方法[J].客车技 术与研究,2011,33(1):39-42.

(责任编辑 符有梅)