重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (9): 180-188.

• 信息·计算机 • 上一篇    下一篇

未知环境中无人机自适应边界快速检测算法

唐嘉宁,谢翠娟,赵一帆   

  1. (1.云南民族大学 电气信息工程学院,昆明 650000; 2.云南民族大学 无人自主系统研究院,昆明 650000)
  • 出版日期:2023-10-17 发布日期:2023-10-17
  • 作者简介:唐嘉宁,女,博士,研究员,主要从事多无人机协同研究,Email:tjn1216@163.com;通信作者 赵一帆,男,博士, 讲师,主要从事无人机组网通信研究,Email:shipzhaoyifan@hotmail.com。

Fast adaptive frontier detection algorithm for in unknown environment

  • Online:2023-10-17 Published:2023-10-17

摘要: 边界感知检测是无人机实现自主探索的重要组成部分之一。为了提高在复杂多样 的地下狭窄环境中自主探索过程的边界检测效率,提出一种未知环境中的无人机自适应边界快 速检测算法(ADPlanner)。通过雷达感知地下隧道未知环境,自适应地调整地下隧道或矿洞环 境的局部采样空间,根据环境结构大大提高采样率(添加到 RRG中的采样点与采样次数的比 值);提出重采样率,以减小相邻时刻自适应采样框的采样点冗余度,进而通过重要性采样策略 解决 GBPlanner重复区域的过采样问题,实现增量检测。仿真实验表明:在 2个不同的未知场 景中,与 GBPlanner相比,ADPlanner边界检测采样的运行时间减少了 20.27%~38.33%,路径长 度缩短了 11.24%~18.86%,总探索时间缩短了 27.38%~38.38%,显著提高了无人机在未知 环境下的探索效率。

关键词: 未知环境探索, 自适应采样框, 重要性采样, 路径规划, SLAM

Abstract:  Boundary sensing detection is one of the important parts of autonomous exploration of UAV. In order to improve the efficiency of boundary detection in the process of autonomous exploration in complex and diverse underground narrow environments, this paper proposes an adaptive fast boundary detection algorithm for unmanned aerial vehicles (ADPlanner) in unknown environments. First, we perceive the unknown environment of the underground tunnel through optical radar, adaptively adjust the local sampling space of the underground tunnel or mine tunnel environment, and greatly improve the sampling rate (the ratio of the sampling points added to the RRG to the number of sampling attempts) according to the environmental structure. Secondly, we propose a resampling rate to reduce the redundancy of sampling points of the adjacent adaptive sampling frame, Then, the importance sampling strategy is used to solve the oversampling problem of repeated areas in the GBPlanner and achieve incremental detection. The simulation experiment shows that in two different unknown scenarios, compared with the GBPlanner, the ADPlanner boundary detection sampling run time is reduced by 20.27%~38.33%, the path length is reduced by11.24%~18.86%, and the total exploration time is shortened by 27.38%~38.38%, which significantly improves the exploration efficiency of the UAV in the unknown environment.。

中图分类号: 

  • V249