重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 312-318.

• 能源动力环境 • 上一篇    下一篇

SCR脱硝系统 NOx浓度预测模型与应用

孙安良,武利斌,湛 戌   

  1. (1.深能保定发电有限公司,河北 保定 072150; 2.中国科学院声学研究所,北京 100190; 3.中科汇能(苏州)电子科技有限公司,江苏 苏州 215163)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:孙安良,男,工程师,主要从事检修、生产新技术研发及应用研究,Email:sunanliang@163.com;通信作者 高艳, 女,研究员,主要从事泄漏监测、算法优化控制研究,Email:gaoyancn@yahoo.co.uk。

Prediction model and application of NOx emission of SCR denitrification system

  • Online:2023-11-20 Published:2023-11-20

摘要: 针对火电机组选择性催化还原(SCR)脱硝系统烟气氮氧化物出口浓度预测误差 大、准确率低的问题,建立了利用注意力机制(AM)优化长短时记忆神经网络(LSTM)算法的氮 氧化物出口浓度的实时预测模型。该模型通过 LSTM模型提取 SCR脱硝系统运行数据特征,搭 建输入的时间序列与出口 NOx浓度时间序列之间的非线性关系,AM进一步优化 LSTM隐含层 输出序列的权值,最后得到 SCR脱硝系统出口 NOx浓度预测模型。深能保定某 350MW 火电 机组 SCR脱硝运行实验数据表明:AMLSTM与 RNN、LSTM相比预测精度更高,泛化能力更强, 有望应用到更多参数的大系统脱硝场景。

关键词: 火电机组, SCR烟气脱硝系统, LSTM神经网络, 注意力机制

Abstract: To address the problem of low accuracy of export nitrogen oxides (NOx) prediction model of selective catalytic reduction (SCR) system in coal-fired units,this paper develops a real-time prediction model of outlet concentration based on the long short-term memory (LSTM) neural network algorithm optimized by attention mechanism (AM).In the LSTM model,the multivariable and multi-scale features are extracted from the SCR denitrification operation data of thermal power plant,which lead to the nonlinear relationship between input time series and outlet NOx concentration time series.The AM is further adopted to optimize the weight value of the LSTM hidden layer output series,from which the SCR denitrification system NOx outlet concentration prediction model is finally obtained.Experimental results of the operation data from a domestic 350 MW thermal power unit denitrification device show that the AM-LSTM,which achieves higher prediction accuracy and stronger generalization ability than the RNN and LSTM algorithms,may be further applied to large-scale denitrification scenarios with more parameters.

中图分类号: 

  • X701