重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 110-118.

• “智能机器人感知、规划及应用技术”专栏 • 上一篇    下一篇

面向无人车近距离行人跟踪的自适应双重识别技术

黄文艺,王 博,孙 超   

  1. (1.北京理工大学 电动车辆国家工程实验室,北京 100081; 2.北京理工大学深圳汽车研究院 电动车辆国家工程实验室深圳研究院,深圳 518000)
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:黄文艺,男,博士,主要从事模式识别、图像识别与自动驾驶感知研究,Email:huangwenyi@szari.ac.cn;通信作者 卢兵,男,博士,主要从事底盘线控技术及路径规划等研究,Email:lubingev@sina.com。

Self-adaptive double Re-ID technique for close pedestrian tracking of unmanned vehicles

  • Online:2023-07-12 Published:2023-07-12

摘要: 智能无人小车的感知系统作为前端输入,对小车的功能应用至关重要,但是现有的 传感器均存在视野盲区,导致无人小车对近距离目标不敏感,易引发安全问题。因此,对近距离 目标有效识别和跟踪成为了亟需解决的问题。提出一种自适应双重识别技术,该技术采用当前 主流目标检测器和目标跟踪器,并结合重识别技术对近距离行人进行实时跟踪。该方法弥补了 当前深度学习算法强依赖数据集的不足,提高了算法的通用性,增强了无人小车感知范围,提升 了无人车的商业价值。实车实验表明,该算法可实现对近距离行人从远至近、从近至远的持续 跟踪,行人 ID保持稳定。

关键词: 无人车, 视觉, 近距离行人检测, 自适应双重识别技术, 重识别网络

Abstract: The perception system of intelligent autonomous vehicles,serving as the frontend input,plays a crucial role in the functional application of these vehicles.However,existing sensors have blind spots in their field of view,leading to a lack of sensitivity towards close-range targets,which can potentially cause safety issues.Thus,effective recognition and tracking of near-distance targets have become pressing issues to address.This paper proposes an adaptive dual recognition technique that employs the current mainstream target detectors and trackers and combines them with re-identification technology for real-time tracking of nearby pedestrians.This method compensates for the shortcomings of current deep learning algorithms that are heavily dependent on datasets,improves the versatility of the algorithms,expands the perception range of autonomous vehicles,and enhances their commercial value.Actual vehicle experiments demonstrate that the algorithm can continuously track pedestrians from far to near and vice versa,while maintaining a stable pedestrian ID.

中图分类号: 

  • U461.9