重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (8): 342-347.
• 数学·统计学 • 上一篇 下一篇
谭祥勇,胡天英,刘 锋
出版日期:
发布日期:
作者简介:
Online:
Published:
摘要: :金融数据分析中经常发现数据具有厚尾或非对称特征,这给模型相关性检验带来 了许多困扰。针对厚尾和非对称分布的序列相关性检验问题,结合秩相关系数和 Huber损失, 提出了 HubT、CCT检验统计量,并在原假设下得到了检验统计量的渐近分布。通过数值模拟说 明新构建的统计量能在厚尾和非对称分布的序列中有良好的表现。
关键词: 线性模型, Huber损失函数, 厚尾误差, 序列相关性检验
Abstract: Heavy tails or asymmetric characteristics data are often found in financial data analysis, which brings many troubles to model correlation testing. In this paper, we address the problem of serial correlation testing for heavy tails and asymmetric distributions by combining the rank correlation coefficient and Huber loss, proposing the HubT and CCT test statistics, and obtaining the asymptotic distribution of the test statistics under the null hypothesis. The numerical simulation shows that the newly constructed statistic can have good performance in heavy tails and asymmetric distributions.
中图分类号:
谭祥勇, 胡天英, 刘 锋. Huber损失下线性模型的序列相关检验[J]. 重庆理工大学学报(自然科学), 2023, 37(8): 342-347.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://clgzk.qks.cqut.edu.cn/CN/
http://clgzk.qks.cqut.edu.cn/CN/Y2023/V37/I8/342
Cited