重庆理工大学学报(自然科学) ›› 2024, Vol. 38 ›› Issue (1): 319-327.

• 能源动力环境 • 上一篇    下一篇

动态工况下基于WOA-BiGRU的PEMFC性能退化预测

杨柳,王巍   

  1. 湖北开放大学机电工程学院,中南财经政法大学信息与安全工程学院
  • 出版日期:2024-02-07 发布日期:2024-02-07
  • 作者简介:杨柳,女,讲师,主要从事新能源控制理论研究,Email:380286096@qq.com。

Performance degradation prediction of PEMFC under dynamic operating conditions based on WOA-BiGRU

  • Online:2024-02-07 Published:2024-02-07

摘要: 质子交换膜燃料电池(protonexchangemembranefuelcell,PEMFC)是重要的现代可持续能源发电装置,准确估计其性能退化对实际应用至关重要。传统的数据驱动方法缺少对老化机制的考虑,因此对性能退化过程中的电压恢复现象的处理欠佳。通过分析PEMFC运行数据中的多种特征信息,提出一种动态工况下的PEMFC性能退化预测方法,更好地处理电压恢复现象。首先使用随机森林算法进行数据特征分析,确定模型训练使用的特征量。然后建立双向门控循环单元模型(bidirectionalgatedrecurrentunits,BiGRU),并使用鲸鱼优化算法(whaleoptimizationalgorithm,WOA)进行参数优化。最后,使用经过优化的BiGRU模型进行PEMFC性能退化预测,并进行预测效果评估。在PEMFC动态数据集上的实验结果表明,预测效果较GRU提高了28.1%~33.7%,较BiGRU提高了25.5%~31.2%。

关键词: 质子交换膜燃料电池, 性能退化预测, 电压恢复现象, 双向机制, 鲸鱼优化算法

Abstract: Proton exchange membrane fuel cell (PEMFC) is an important modern sustainable energy power generation device, and accurate estimation of its performance degradation is crucial for practical applications. Conventional data-driven approaches lack consideration of aging mechanisms, leading to unsatisfying handling of voltage recovery during performance degradation. By analyzing various characteristic information in PEMFC operational data, this paper proposes a dynamic operational condition-based prediction method for PEMFC performance degradation. First, the random forest algorithm is employed for data feature analysis to determine the features used for model training. Subsequently, a bidirectional gated recurrent units (BiGRU) model is built, and parameter optimization is performed using the whale optimization algorithm (WOA). Finally, the optimized BiGRU model is utilized for predicting PEMFC performance degradation, and the prediction effectiveness is evaluated. Experimental results on the PEMFC dynamic data set show the prediction accuracy is improved by 28.1%~33.7% compared with that of GRU and increased by 25.5%~31.2% compared with that of BiGRU.

中图分类号: 

  • TM911.4