重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 215-224.doi: 10.3969/j.issn.1674-8425(z).2023.02.024

• 信息·计算机 • 上一篇    下一篇

协作机器人参数辨识与误差补偿算法研究

秦 蒙,陈良培,孟琨泰   

  1. 1.重庆电力高等专科学校 信息工程学院,重庆 400053; 2.中国科学院深圳先进技术研究院 光电工程技术中心,广东 深圳 518055; 3.河北机电职业技术学院,河北 邢台 054000
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:秦蒙,男,硕士,副教授,主要从事人工智能、智能算法、并联机构及物联网技术研究,Email:well915@163.com。

Research on parameter identification and error compensation algorithms of collaborative robots

  • Online:2023-03-21 Published:2023-03-21

摘要: 为探索协作机器人动态特性,提高末端定位精度,以库卡 LBR轻型类人手臂协作 机器人模型为例进行研究。基于 RBF神经网络和滑模控制算法设计协作机器人动力学控制策 略并分析动态特性和末端位置误差。基于 LevenbergMarquardt非线性阻尼最小二乘算法进行 协作机器人参数辨识和误差补偿。ADAMSMatlab联合仿真结果表明:基于 RBF神经网络设计 的滑模控制器动态控制效果较好,极限工况末端误差平均约为 4.7mm,主要是重力负载的影 响。基于 LevenbergMarquardt非线性阻尼最小二乘算法进行变参数误差补偿后末端平均误差 小于 0.2mm,有效提升了位置精度,为协作机器人的控制和误差补偿研究提供了理论基础

关键词: 协作机器人, RBF神经网络, 滑模控制, 误差补偿

Abstract: As intelligent operating assistants, collaborative robots have opened up a wide range of application scenarios in fields of industry, service and medical treatment. In order to explore the dynamic characteristics of collaborative robots and improve the accuracy of terminal positioning, this paper takes the KUKA LBR lightweight humanoid arm collaborative robot model as an example for research. Based on the RBF neural network and the synovial control algorithm, the dynamic control strategy of the collaborative robot is designed and the dynamic characteristics and end position error are analyzed. Parameter identification and error compensation of collaborative robots are carried out based on the Levenberg-Marquardt nonlinear damping least squares algorithm. The ADAMS-Matlab joint simulation shows that the dynamic control effect of a sliding mode controller based on the RBF neural network is better. The average terminal error under an extreme working condition is about 4.7 mm, which is mainly due to the influence of gravity load. After variable parameter error compensation, the average terminal error is less than 0.2 mm, which effectively improves the position accuracy and provides a theoretical basis for the research of collaborative robot control and error compensation.

中图分类号: 

  • TP242