重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 136-145.

• “智能机器人感知、规划及应用技术”专栏 • 上一篇    下一篇

多策略鲸鱼算法优化粒子滤波的 SLAM精度研究

蔡 艳,杨光永,黄训爱,徐天奇   

  1. (云南民族大学 电气信息工程学院,昆明 650000)
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:蔡艳,女,硕士研究生,主要从事 SLAM算法、移动机器人研究,Email:2358899542@qq.com;通信作者 杨光永, 男,博士,副教授,主要从事机器人学、传感器研究,Email:guangyong_yang@126.com。

Research on SLAM accuracy of particle filter optimized by multi-strategy whale algorithm

  • Online:2023-07-12 Published:2023-07-12

摘要: 针对传统粒子滤波算法重采样导致粒子贫乏,需增加粒子数以提高估计精度,提出 一种基于多策略鲸鱼算法优化的粒子重组粒子滤波算法。首先,通过鲸鱼算法的气泡网捕食机 制,使最优粒子引导粒子集向高似然区域移动,提高估计精度;其次,实时计算最优粒子附近的 粒子密度,当密度大于设置的随机搜索阈值时,引入 Levy飞行策略,扩大搜索空间,当其大于最 大密度值时,自适应调整迭代次数;最后,在重采样阶段,将筛选后保留的粒子与剩余粒子重新 组合成新的粒子,以此增加粒子多样性。通过仿真实验改进算法在 SLAM中的性能,结果表明: 该算法与标准算法相比,其位姿与路标估计精度更高,鲁棒性更佳。

关键词: 粒子滤波, 鲸鱼优化算法, 自适应调整, Levy飞行, SLAM

Abstract: Aiming at the problem that the resampling of the traditional particle filter algorithm leads to particle scarcity and the need to increase the number of particles to improve estimation accuracy,this paper proposes a recombined particle filter algorithm based on multi-strategy whale algorithm optimization.First of all,through the bubble net feeding mechanism of the whale algorithm,the optimal particle guides the particle set to move to the high likelihood region so as to improve the estimation accuracy.Secondly,the particle density near the optimal particle is calculated in real time.When the density is greater than the set random search threshold,the Levy flight strategy is introduced to expand the searching space.When the threshold is greater than the maximum density,the iteration number is adjusted adaptively.Finally,the resampling stage recombines the retained particles after screening and the remaining particles into new particles to increase particle diversity.The simulation experiments are conducted to verify the performance of the improved algorithm in simultaneous localization and mapping (SLAM).The results show that the proposed algorithm has a higher accuracy and better robustness than the standard algorithm does.

中图分类号: 

  • TP242