重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 104-112.doi: 10.3969/j.issn.1674-8425(z).2023.02.012

• “新能源汽车能量管理技术研究”专栏 • 上一篇    下一篇

电机及控制器冷却流道散热性能分析及结构优化

唐 琳,赖晨光,谭礼斌   

  1. 1.重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054; 2.陕西科技大学 机电工程学院,西安 710021)
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:唐琳,男,硕士研究生,工程师,主要从事车身设计及空气动力学研究,Email:tlnb666@126.com。通讯作者 赖 晨光,男,博士,教授,主要从事汽车和高速列车空气动力学,车身设计与优化研究,Email:chenguanglai@cqut. edu.cn。

Heat dissipation performance analysis and structure optimization of cooling channels for motors and controllers

  • Online:2023-03-21 Published:2023-03-21

摘要: 为降低电机绕组及控制器 IGBT温升,提升电机及控制器冷却流道散热性能的同时 确保电机及控制器的冷却流道具有较低流动阻力,以某微型电动车驱动系统的冷却流道结构、 电机及控制器为研究对象,采用 CFD方法搭建了电机及控制器的流固耦合分析模型,分析了该 冷却流道原始结构下内部速度场及流阻特性、电机绕组温度场、IGBT温度场。采用协同优化方 法对电机及控制器冷却流道结构参数进行智能寻优,寻求低流阻、高效散热的冷却流道结构。 结果表明:冷却流道原结构存在局部涡旋和流动死区,冷却流道流阻为 31.87kPa,电机绕组最 高温度为 120.04℃。在满足工艺和流阻改善的条件下,选取绕组温升改善最明显的结构作为 最终优化结果。优化后冷却流道内部流动存在的局部涡旋、流动死区都得以减少,流动更顺畅, 流速更均匀,流动阻力显著下降,流阻较原始模型降低约 12.5kPa,降幅 39.4%。优化后电机绕 组端部最高温度较原始模型降低3.28℃,降幅2.7%。研究结果可为电机及控制器冷却结构的 设计及改良提供理论参考。

关键词: 电机, 控制器, 流阻, 温度, 优化分析, 冷却结构

Abstract: In order to reduce temperature rise of motor coils and controller IGBT, improve heat dissipation performance of the cooling channel for motors and controllers, and ensure that the cooling channel has low flow resistance, this paper takes the cooling channel structure of the driving system of a micro electric vehicle and a motor integrated with a controller as the research objects, and establishes a fluid-structure coupling analysis model of motors and controllers through CFD method. The internal velocity field, flow resistance characteristics, motor winding temperature field and IGBT temperature field under the original structure of the cooling channel are analyzed. The collaborative optimization method is used to intelligently optimize the structural parameters of the cooling channel for the motor and the controller, and seek the cooling channel structure with low flow resistance and efficient cooling performance. The results show that the original structure of the cooling channel has local vortexes and flow dead zones, the flow resistance of the cooling channel t is 31.87 kPa, and the maximum temperature of the motor winding is 120.04 ℃. Under the condition of meeting the goal of an optimization of manufacturing process and flow resistance, a structure with the most significant improvement of winding temperature rise is selected as the final optimization result. After optimization, local vortexes and flow dead zones of the cooling channel are improved, the flow is smoother, and the flow velocity is more uniform. The flow resistance decreases significantly, and the flow resistance decreases by about 12.5 kPa or 39.4% compared with the original model. The maximum temperature at the winding end of the optimized motor reduces by 3.28 ℃ or 2.7%. The research results can provide a theoretical reference for the design and improvement of the cooling structure of motors and controllers for new energy vehicles.

中图分类号: 

  • TK730.2