重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (3): 12-21.

• 车辆工程 • 上一篇    下一篇

融合 FCM-RBF的短时交通拥堵状态预测模型

张生瑞,连江南,焦帅阳   

  1. 1.长安大学 运输工程学院,西安 710064; 2.河南城建学院 土木与交通工程学院,河南 平顶山 467036
  • 出版日期:2023-04-26 发布日期:2023-04-26
  • 作者简介:张生瑞,男,工学博士,教授,主要从事交通流理论研究,Email:zhangsr@chd.edu.cn。

A fusion model for short-term traffic congestion state predictionwith FCM-RBF

  • Online:2023-04-26 Published:2023-04-26

摘要: 针对高速公路常发性拥堵路段,提出一种融合模糊 C均值聚类算法和径向基函数 神经网络的短时交通拥堵状态预测模型。模型基于 FCM聚类算法获取历史交通流的拥堵状态 标签以及不同交通状态的聚类中心;基于 RBF神经网络算法实现短时交通流参数预测。将 RBF神经网络预测得到的短时交通流参数代入 FCM聚类结果中,得到短时交通拥堵状态标签。 通过交通流参数与交通状态的隐含关系,搭建出融合模型的基本计算架构。结果表明:FCM聚 类算法训练后的分类结果更加稳定有效;RBF神经网络比对照方法具有更高的预测精度,预测 相对误差基本低于 1.2%;建立的 FCMRBF模型对短时交通拥堵状态预测的分类正确率达到 95%,预测结果准确可靠。

关键词: 交通工程, 短时交通拥堵状态预测, 模糊 C均值聚类, 径向基函数神经网络, 智能交 通系统

Abstract: For frequently congested sections of an expressway, this paper proposes a short-term traffic congestion prediction model combining a fuzzy C-means (FCM) clustering algorithm and a radial basis function (RBF) neural network. In the model, the FCM clustering algorithm is used to obtain the congestion status labels of historical traffic flows and clustering centers of different traffic states, and the RBF neural network algorithm is used to predict short-time traffic flow parameters. The short-term traffic flow parameters predicted by the RBF neural network are brought into the result of the FCM clustering algorithm to obtain the short-term traffic congestion status label. In this way, the basic computational architecture of the fusion model is built through the implicit relationship between the traffic flow parameters and the traffic state. The results show that the classification results are more stable and effective after being trained by the FCM clustering algorithm. The RBF neural network has higher prediction accuracy than the control methods, and the relative error of the prediction results is basically less than 1.2%. The classification accuracy of the short-term traffic congestion state predicted by the FCM-RBF model reaches 95%, demonstrating the accuracy and reliability of the proposed model.

中图分类号: 

  • U494.1+4