重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 200-208.

• 智能技术 • 上一篇    下一篇

视觉定位检测中基于最大信息熵的特征优化方法

韩金彪,赵 津,刘 畅,唐 雄   

  1. 1.贵州大学 机械工程学院,贵阳 550025; 2.贵州大学 现代制造技术教育部重点实验室,贵阳 550025)
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:韩金彪,男,硕士研究生,主要从事智能车环境建模与环境感知研究,Email:2945491336@qq.com;通信作者 赵 津,男,博士,教授,主要从事无人驾驶、无人机与无人车协同控制研究,Email:zhaoj@gzu.edu.cn。

Characteristic optimization method based on maximum information entropy in visual positioning detection

  • Online:2023-05-06 Published:2023-05-06

摘要: 为了提高移动机器人在未知环境中执行复杂任务的能力,结合最大信息熵概念、同 步定位与地图构建(simultaneouslocalizationandmapping,SLAM),提出一种视觉定位与检测系 统。以 ORBSLAM2检测算法为基础,在均匀分布的前提下,通过寻找单目视觉下具有最优先 验信息的特征点,选择具有最大信息熵的前 N个特征进行二次优化使其快速收敛,实现高精度 定位。为了验证算法的有效性,结合 YOLOV4目标检测进行实物测试,证明在嵌入式移动设备 中可实现实时定位、检测等功能。实验结果表明:所提出算法在 TUM和 KITTI数据集上的定位 精度均有提升,算法在多场景、多设备下均优于原始算法。

关键词: 1.贵州大学 机械工程学院, 贵阳 550025; 2.贵州大学 现代制造技术教育部重点实验室, 贵阳 55002

Abstract: In order to improve the ability of mobile robots to perform complex tasks in unknown environments, this paper constructs a visual localization and detection system that combines the concept of maximum information entropy with Simultaneous Localization and Mapping (SLAM). Based on the ORB-SLAM2 detection algorithm, under the premise of uniform distribution, the feature points with the most prioritized information under monocular vision are searched. The first N features with the maximum information entropy are then selected to be re-optimized for fast convergence to achieve high accuracy localization. At the same time, to verify the effectiveness of the algorithm, physical tests are conducted in combination with YOLO-V4 target detection, which can achieve real-time localization and detection in embedded mobile devices. The experimental results show that the localization accuracy of the proposed algorithm in this paper is improved in both TUM and KITTI datasets, and the proposed algorithm is better than the original algorithm in multiple scenarios and devices.

中图分类号: 

  • TP391.4