重庆理工大学学报(自然科学) ›› 2019, Vol. 33 ›› Issue (10): 127-135.doi: 10.3969/j.issn.1674-8425(z).2019.10.020
张钰莎1,蒋盛益2
摘要: 网络入侵检测是通过分析网络流量行为来识别网络中恶意活动的过程,针对网络入侵检测面临的海量数据入侵检测的挑战,提出了一种新的基于 KDD CUP 99数据集的特征选择算法,将基于滤波器和包装器的方法相结合,选择合适的特征进行网络检测入侵。首先,基于训练数据的一般特征对特征进行评价,不依赖于任何挖掘算法;然后,采用互信息萤火虫算法(MIFA)作为基于包装器的特征选择策略进行特征提取,进一步基于C4.5分类器和基于贝叶斯网络(BN)的分类器,结合KDD CUP 99数据集对得到的特征进行分类;最后,将提出的方法与已有的工作进行比较。实验结果表明:10个特征足够检测入侵,并提高了检测精度和假阳性率。
中图分类号: