重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 101-110.

• 机械·材料 • 上一篇    下一篇

稀疏表示自编码网络的齿轮平稳型故障特征提取研究

郑 琛,丁 康,何国林   

  1. 1.华南理工大学 机械与汽车工程学院,广州 510640; 2.人工智能与数字经济广东省实验室,广州 510640; 3.广州华工机动车检测技术有限公司,广州 51064
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:郑琛,男,硕士研究生,主要从事 NVH与信号处理研究,Email:201920100162@mail.scut.edu.cn;通讯作者 何国 林,男,博士,副教授,主要从事齿轮故障诊断、信号处理及数字孪生技术研究,Email:hegl@scut.edu.cn;共同通 讯作者 叶鸣,男,硕士,高级工程师。主要从事机动车检测及检测设备开发研究,Email:yeming@scut.edu.cn。

Research on feature extraction of steady-type gear faults with sparse representation auto-encoder network

  • Online:2023-02-16 Published:2023-02-16

摘要: 受到噪声和设备偏心等因素的干扰,定轴齿轮平稳型故障的整体特征参数难以准 确提取,而智能诊断方法提取的多为抽象特征,不具备可解释性。联合平稳型故障响应机理与 稀疏表示理论,设计了具备可解释性的稀疏表示自编码网络,将自编码网络的编码层和解码层 分别等效为稀疏向量的求解与过完备字典的学习;基于平稳型故障信号参数的特征设计了自适 应优化算法,有效实现了特征参数的快速全局寻优;结合设计的稀疏表示自编码网络与齿轮平 稳型故障信号特征构建了深度神经网络,对故障信号进行高精度的特征重构。仿真分析表明该 方法特征提取精度高、抗噪性能好,能够直接提取具有明确物理意义的平稳型故障特征参数,进 一步验证了所提方法的有效性。

关键词: 定轴齿轮, 特征提取, 自编码网络, 稀疏表示, 平稳型故障

Abstract: Due to the interference of noise, equipment eccentricity and other factors, it is hard to accurately extract the steady-type fault parameters of fixed-shaft gears. Additionally, the features extracted by intelligent diagnosis methods are often abstract and difficult to explain. To solve this problem, firstly, an interpretable sparse representation Auto-Encoder network is designed based on the steady-type fault response mechanism and sparse representation theory. The encoding and decoding layers of Auto-Encoder network are equivalent to the solution of the sparse vector and learning of the over complete dictionary respectively. Based on the characteristics of steady-type fault signal parameters, an adaptive optimization algorithm is then designed to realize the fast-global optimization of characteristic parameters. Combining the designed sparse representation Auto-Encoder network and the steady-type fault signal features of fixed-shaft gears, a deep neural network is built to achieve a high-precision feature reconstruction of steady-type fault signals. Finally, the simulation shows that the proposed method can directly extract steady-type fault feature parameters with a clear physical meaning, and has high feature extraction accuracy and good anti-noise performance, which further verifies the effectiveness of the proposed method.

中图分类号: 

  • TN911